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Determination of Thermal Diffusivity 
of Solids by Use of Periodic Heat Flow 
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This paper deals with the determination of thermal diffusivity in a cylindrical 
specimen by the use of a periodic heat flow in the axial direction. Heat transfer 
from the periphery is taken into account, and its influence upon the evaluation of 
thermal diffusivity from measurement of phase lag and amplitude decrement, 
respectively, is discussed. Experimental conditions are pointed out for which the 
evaluation can be done as for a semiinfinite specimen. Theoretical considerations 
are compared with experimental results. 
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1. I N T R O D U C T I O N  

The the rmal  diffusivity of a ma te r i a l  re la tes  its hea t  conduct ivi ty  to its 
volumetr ic  hea t  capaci ty .  The  diffusivity is an impor tan t  t r anspor t  p roper ty  
and is involved in many  engineer ing problems of hea t  t ransfer .  I t  is the 
de te rmin ing  p a r a m e t e r  in the different ia l  equat ion for a nons ta t ionary  
t e m p e r a t u r e  field in a solid. I f  the diffusivity is known, the t empe ra tu r e  field 
m a y  be evalua ted  f rom the solution of  the  different ia l  equat ion and its 
bounda ry  conditions.  

On the other  hand,  if  the t empe ra tu r e  field is known by measurement ,  
then the the rmal  diffusivity m a y  be derived from the same equation.  This has 
led to the  development  of  several  methods  for the  exper imenta l  de te rmina t ion  
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NOMENCLATURE 
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thermal diffusivity (m2/s) 
specific heat (J/kg ~ 
heat loss factor ( - )  
heat transfer coefficient (W/m 2 ~ 
thermal condietivity (W/m ~ 
period of temperature variation (s) 
radius of cross-section of specimen (m) 
time (s) 
time lag (s) 
temperature (~ 
axial coordinate in specimen (m) 
axial distance between measuring points (m) 
Blot's number 
Fourier's number 
temperature difference (~ 
heat loss parameter ( - )  
heat loss coefficient (s -1 ) 
density (kg/m 3) 
frequency of the periodic temperature variation (s -1) 
amplitude of temperature variation (~ 

Subscripts 

a 
1 
0 
s 

t 

amplitude decrement 
phase lag 
thermal upstream measuring point 
stationary temperature 
time-dependent temperature 

of diffusivity. A comprehensive survey of the relevant literature may be found 
in [1]. 

The methods can be divided into two groups, according to the nature of 
the temperature field in the test specimen, namely the periodic temperature 
method and the transitory temperature method. The methods have been 
applied to test specimens of regular geometrical shape and under thermal 
conditions that allow the specimens to be treated mathematically as idealized 
bodies, such as long rods, flat plates, and semiinfinite solids or cylinders. In 
other words, the test specimens have to fit the method. In engineering 
practice, however, the specimen is more often unique and of given shape. An 
example is cylindrical rods obtained from core drilling in rocks or refractory 
materials. Further work on shaping the rods may not be convenient, and it 
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may also affect the uniqueness of the specimen. In such cases, it is essential to 
have a method for the determination of the thermal diffusivity that is 
applicable to any specimen. 

This paper treats the periodic temperature method as applied to test 
specimens of cylindrical form with periodic heat flow in the axial direction. 
The aim is to establish the experimental conditions under which the rod can 
be handled mathematically as a semiinfinite body. If the rod can be 
considered semiinfinite in the axial direction, any radial heat loss will not 
influence the calculation, and the thermal diffusivity can be evaluated from 
one set of measurements. When heat loss has to be taken into account, several 
sets of measurements are needed. Experimental runs must be performed 
using different values of the independent variables to make it possible either 
to eliminate the influence of heat loss by calculations as King did [2], or to 
find the conditions at which the thermal diffusion is revealed as uniform by 
further variation of the parameters. King needed two sets of measurements 
for his evaluation of the diffusivity. The alternate object needs more measure- 
ments. 

The following shows how data for the experimental conditions can be 
treated to demonstrate the influence of heat loss, if any, and thereby also 
clarify the conditions where only one set of measurements is sufficient for 
evaluation of the thermal diffusivity. 

2. THE DIFFERENTIAL EQUATION 

The treatment here is mainly based on the analysis by Danielson and 
Sidles [5]. We consider a cylindrical rod that is heated at one end and cooled 
at the other. Heat flows from the heated to the cooled end. The heat source 
produces a stationary temperature field on which is superimposed a periodic 
field, which varies as the cosine of the time. 

The temperature field in the rod for the one-dimensional case can be 
described mathematically by the equation 

OT k O2T 
cp .  ~ ;  = Ox 2 + Qs(x) + QAt) (~) 

where Qs(x) is the stationary heat loss from the periphery to the surround- 
ings, and Qp(t) is the time-dependent heat loss that is referred to the 
time-dependent temperature of the rod. These two terms for heat loss are 
related to the respective temperature fields. Equation (1) describes two fields, 
the stationary and the time-dependent, which are additive. By subtracting 
terms describing the stationary field from Eq. (1), we get the equation for the 
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time-dependent temperature field. This equation can be written 

00 020 
- -  = a �9 - ~zO ( 2 )  
Ot Ox  2 

where 0 = Tt  - Ts  is the time-dependent temperature rise above the 
stationary temperature Ts at a certain location, and g is the heat loss 
coefficient related to the heat capacity of the rod. With the boundary 
conditions 

0(0, t) = Oo cos wt 

0(o0, t) = 0 (3) 

Equation (2) has a solution 

O(x ,  t )  = Oo �9 e -px �9 cos ( w t  - q x )  (4) 

where 

u + ~ / ~ +  ~),/~ 
P = 2a (5) 

and 

_ #  + ~/#2 + w2)1/2 

q =  2a 
(6) 

The solution (4) describes a temperature field that has the form of a wave 
propagating in the axial direction of the rod, and whose phase lag and 
amplitude are influenced by the heat loss to the surroundings. 

From the expression for the temperature field (4), two expressions for 
the thermal diffusivity may be extracted as functions of measurable quanti- 
ties, namely, the phase lag and the amplitude decrement of the temperature 
wave. These expressions are treated separately. 

2 . 1 .  C r i t e r i a  f o r  t h e  U s e  o f  P h a s e  L a g  

To study how a phase of the temperature wave propagates through the 
rod, the maximal value of a certain wave is chosen as the reference event; at 
distance xt from the heat source. The maximal value occurs when 

cos ( w t t  - q ~ x t )  = 0 (7) 
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o r  

t l  = q l x l  (8) 

At  another distance x2 > xi ,  the same phase occurs at the time 

t2 = q z x 2  (9) 

The time difference 

1 
A t  = t2 - t l  = -  ( q 2 x 2  - q l x l )  (10) 

is the phase lag on the temperature  wave while it propagates from xl to x 2. 
It is here assumed that  the heat loss coefficient is independent of x 

between x~ and x2, that  is, ql = q2. Then the expression for the phase lag can 
be written as 

A t -  2X/2X/2X/2X/2X/2X/2~- ~ + 1 -- (11) 

The expression gives the thermal  diffusivity as 

a 2w ~-~kt 2 -I- 1 -- = 2w �9 At 2 F, (12) 

F~ is introduced as a heat loss factor related to the phase lag in the 
temperature  wave. Fl is always _<1. When heat losses are negligible, u = 0; 
then F~ = 1, and the expression for a is identical to that  for the semiinfinite 
test specimen. When heat losses are present, then F1 < 1, and the measured 
value of  the diffusivity is apparent ly too low. Heat  is then diffusing radially 
out of  the rod between the observation points xl and x2. 

For a further analysis of  the heat loss factor, the following expressions 
are introduced: 

P = 2~-/~ 
h = (# /2 )  r �9 p c  

the period of  the temperature  wave 
the radial heat transfer coefficient at the cylindrical 
boundary  of  the rod 
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Bi = ( h  �9 r ) / k  the Biot number for the radial heat transfer 
Fo = ( a  �9 P ) / r  2 the Fourier number for the radial heat transfer 

The expression for h is deduced from the fact that the heat loss from an 
element of the rod is equal to the heat flow from the periphery, that is, 

~rr 2 . A x  . p c  . O . ~ t =  2 7 c r  . A x  . h . 0 (13) 

# is here seen to be the rate at which stored heat is removed from the rod. 
These expressions are put into the quotient # / w  to give: 

X -  - B i .  Fo (14) 
O) 7r 

With this formula, the heat loss factor can be writen 

F1 = X/XT+ 1 - X  (15) 

When the heat transfer between the rod and the surroundings is low, h --~ 0; 
then X << 1 and F~ - *  1. The termal diffusivity can in that case be evaluated 
from the expression for the semiinfinite specimen. From this we see that the 
product of the Biot number and the Fourier number, as they are defined here, 
governs the experimental conditions under which the rod can be treated as a 
semiinfinite body. 

In Fig. 1, the factor F1 is shown as function of X. From the figure we can 
see, for example, that the thermal diffusivity can be evaluated by measure- 
ment to within 10% when X =< 10 -~ and to within 1% when X =<_ 10 -2. 

2.2. Criteria for Use  of  Amplitude Decrement  

From the expression (4) it can be seen that the imagined temperature 
wave propagates a certain axial distance Ax in the rod with an amplitude 
decrement of 

 O exp[ q ,16) 
A00 2a 1 

This expression gives the thermal diffusivity explicitly as 

7tAx 2 
a = �9 Fa (17) 

P .  ln2(A0/A00) 
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Fig. 1. Heat loss factors as functions of X. ~, F~, from King's experiments (Cu, 35~ ~, 
F~, from King's experiments (Cu, 60~ Q, F1, from King's experiments (Sn, 35~ O, FI, 
from the author's experiments (A1, 60~ O, Fo, from the author's experiments (A1, 
60~ 

where F, is a heat loss factor related to the logarithmic amplitude decrement. 
After manipulation of expressions similar to that given in the previous section, 
the heat loss factor can be expressed as 

Fa=N/-~q- 1 + X  (18) 

F~ is shown in Fig. 1 as a function of X. 
From the figure, we can see, for examle, that when X _< 10 2, the thermal 

diffusivity can be evaluated to within 1% of the value given from equations for 
a semiinfinite specimen. The thermal diffusivity determined from experi- 
ments involving high values of X will be too high when evaluated from the 
expression for the semiinfinite specimen. 

2.3. General Criteria 

The heat loss factors can bc seen to be independent of the heat 
conductivity of the test specimen. These factors depend on the heat capacity 
together with the impressed variables, wave period P, heat transfer coefficient 
h, and radius of the rod's cross-section. 
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The factors are related as 

F1 (ln wAt ~2 
F: (A---~-A00) ] (19) 

For a semiinfinite body, F1 = Fa = 1, and we have from Eq. (19) the condition 
that 

P A0 
In ~ = - 2~r (20) 

za~0 

This relation will serve as a guide in ensuring that the measurements, phase 
lag and amplitude decrement, will allow for the thermal diffusivity to be 
evaluated as for a semiinfinite specimen. The condition (20) is fulfilled when 
the parameter  X = (1/~r) Bi �9 Fo _< 10 -2, and gives values of the diffusivity 
within about 1%, due to heat losses. 

3. PRACTICAL CONSIDERATIONS 

Practical considerations are mainly concerned with the choice of 
distance Ax between the temperature measuring device and the period P. The 
choices are made with the intention to minimize the overall uncertainty in 
evaluated values of the diffusivity. 

The temperatures are usually measured by use of thermocouples. The 
thermocouples may be placed in radial bores that reach just to the axis of the 
specimen. A practical minimum diameter of the thermocouple is about 0.5 
mm for temperatures <1000~ The axial distance between the thermocou- 
ples can then be measured within an estimated total uncertainty of +0.4 ram. 
This uncertainty in Ax will be reflected in the relative uncertainty of the 
calculated value of the thermal diffusivity; for example, 5% for Ax = 15 mm 
or about 2% for Ax = 50 mm. 

The choice of distance Ax has, however, to be a compromise between the 
accuracy of Ax values and the smallest amplitude of the temperature wave 
that can be registered at the downstream measuring point. The amplitude at 
that point will for a given material in a given experiment be dependent on the 
period of the wave, a period that further has to be chosen so that the heat loss 
factors can be rendered approximately 1.0, according to Fig. 1. In the final 
choice, a reasonable distance should be related as 

Ax/~- .  r = constant (21) 

This means that specimens of a material with low conductivity should have a 
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larger cross-section than specimens of materials with high conductivity for a 
given period. 

4. COMPARISON WITH EXPERIMENTAL RESULTS 

The heat loss factors as they have been defined here can be evaluated 
from experimental data for specimens of known thermal diffusivity. The 
results of King's experiment [2] are available for comparison with the 
theoretical results. King determined the thermal diffusivities of tin and 
copper using specimens in the form of wires, 0.0025 m in diameter. He 
measured the phase lag of the temperature variation between two points on 
the wire applying alternative frequencies of the temperature wave. From 
these results, we can calculate the loss factor as the ratio of the thermal 
diffusivity, evaluated from the measurement, and the known value for the 
diffusivity. 

The heat loss from the wires can also be estimated. Nusselt's number for 
the heat transfer to the surrounding air is assumed to be Nu = 1.7 for wire 
temperature 35~ and Nu = 1.8 for 60~ [3]. It is thereby possible to 
estimate the ~ values corresponding to different values of the loss factor. The 
results are shown as plots in Fig. 1. It can be seen that the heat loss factor 
decreases approximately as predicted by the theoretical curve. 

In the figure are also plotted results from some measurements on pure 
aluminum, made by the author [4]. The test specimen was cylindrical, 
diameter 20 mm, length 150 mm. The surface was insulated with asbestos 
tape, wrapped to a thickness of 4 ram, giving an overall heat transfer 
coefficient to the surrounding tube wall of about 40 W / m  2 ~ The period was 
varied over the range 40 < P < 888 s. The plots indicate, respectively, the 
decrease in F1 and the increase in Fa when X > 10 -2. 

5. C O N C L U D I N G  R E M A R K S  

The periodic temperature method for determining the thermal diffusiv- 
ity of solids is suitable for cylindrical specimens of various shapes. The 
influence of heat loss from specimen to surroundings can be controlled by the 
choice of experimental variables. When the heat loss parameter X has values 
_<10 2, then the specimen can be recognized as semiinfinite. When k >_ 10 -I, 
the heat loss factor must be evaluated. Then the estimation of the radial heat 
transfer coefficient, together with the specific heat capacity of the specimen, 
becomes quite important. The method also makes possible the determination 
of the heat transfer coefficient between the outer surface of a specimen and its 
surroundings if specimens with known thermal diffusivity are used. 
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